@,

BiolMed Central

PathoGenetics

Review

microRNAs and genetic diseases
Nicola Meola, Vincenzo Alessandro Gennarino and Sandro Banfi*

Address: Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy

Email: Nicola Meola - meola@tigem.it; Vincenzo Alessandro Gennarino - gennarino@tigem.it; Sandro Banfi* - banfi@tigem.it
* Corresponding author

Published: 4 November 2009
PathoGenetics 2009, 2:7 doi:10.1186/1755-8417-2-7

Received: 20 July 2009
Accepted: 4 November 2009

This article is available from: http://www.pathogeneticsjournal.com/content/2/1/7

© 2009 Meola et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

microRNAs (miRNAs) are a class of small RNAs (19-25 nucleotides in length) processed from
double-stranded hairpin precursors. They negatively regulate gene expression in animals, by
binding, with imperfect base pairing, to target sites in messenger RNAs (usually in 3" untranslated
regions) thereby either reducing translational efficiency or determining transcript degradation.
Considering that each miRNA can regulate, on average, the expression of approximately several
hundred target genes, the miRNA apparatus can participate in the control of the gene expression
of a large quota of mammalian transcriptomes and proteomes. As a consequence, miRNAs are
expected to regulate various developmental and physiological processes, such as the development
and function of many tissue and organs. Due to the strong impact of miRNAs on the biological
processes, it is expected that mutations affecting miRNA function have a pathogenic role in human
genetic diseases, similar to protein-coding genes. In this review, we provide an overview of the
evidence available to date which support the pathogenic role of miRNAs in human genetic diseases.
We will first describe the main types of mutation mechanisms affecting miRNA function that can
result in human genetic disorders, namely: (1) mutations affecting miRNA sequences; (2) mutations
in the recognition sites for miRNAs harboured in target mRNAs; and (3) mutations in genes that
participate in the general processes of miRNA processing and function. Finally, we will also describe
the results of recent studies, mostly based on animal models, indicating the phenotypic
consequences of miRNA alterations on the function of several tissues and organs. These studies
suggest that the spectrum of genetic diseases possibly caused by mutations in miRNAs is wide and
is only starting to be unravelled.

The microRNA world

microRNAs (miRNAs) are a class of single-stranded RNAs
(ssRNAs), 19-25 nucleotides (nt) in length, generated
from hairpin-shaped transcripts. They control the expres-
sion levels of their target genes through an imperfect pair-
ing with target messenger RNAs (mRNAs), mostly in their
3' untranslated regions (3' UTRs) [1]. The biogenesis of
miRNAs involves a complex protein system that includes
members of the Argonaute family, Pol II-dependent tran-
scription and the two RNase III proteins, Drosha and

Dicer [2]. miRNAs are first transcribed in the nucleus as
long transcripts, known as primary miRNA transcripts
(pri-miRNAs), which can sometimes contain multiple
miRNAs [3,4]. Few pri-miRNA transcripts have been stud-
ied in detail, but increasing evidence suggests that miR-
NAs are regulated and transcribed like protein encoding
genes [5].

In brief, within the nucleus, Drosha first forms a micro-
processor complex with the double-stranded RNA-bind-
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ing protein DGCRS8 [6]. It then processes the pri-miRNAs
into a smaller, stem-loop miRNA precursor of ~70 nucle-
otides (pre-miRNA) [7]. pre-miRNAs are exported, in
turn, across the nuclear membrane and into the cytoplasm
by the Exportin-5 complex [8-10]. These pre-miRNAs are
further cleaved by Dicer thus producing a 19- to 25-nucle-
otide RNA duplex. These duplexes are then incorporated
into a ribonucleoprotein complex (RNP) called RISC-like
complex [11,12], referred to as the miRNA-induced
silencing complex (miRISC). Only one strand of the
miRNA-duplex, known as the mature miRNA, is incorpo-
rated into the miRISC complex, while the other strand, the
miRNA-star (miRNA*), is degraded [1] although,
recently, miRNAs* have been found to play a role similar
to that of their cognate miRNAs. Within the miRISC com-
plex, miRNAs bind to the mRNA targets and regulate gene
expression, either at the translational level [13,14] or at
the transcript level [15-17] or both [18]. A crucial role in
the recognition of the target mRNA by the miRNA is
played by the so-called seed region, which is composed of
six to seven nt, which shows a perfect complementarity
between a miRNA and its target. miRNA can be localized
in the intergenic (40%) or the intragenic (60%) regions
[19]. Intragenic miRNAs are located within other tran-
scriptional units which are termed host genes. The vast
majority of intragenic miRNAs is localized within the
intronic regions of their host genes and only a minority
(10%) lies within exonic regions, usually pertaining to the
non protein-coding host genes. Interestingly, it has been
demonstrated that many intronic miRNAs and their host
genes are co-regulated and co-transcribed from a common
promoter [20-22].

miRNAs and their implication in human diseases
miRNAs are implicated in a wide range of basic biological
processes, including development, differentiation, apop-
tosis and proliferation [23,24]. Since the discovery of the
strong impact of miRNAs on biological processes, it has
been hypothesized that mutations affecting miRNA func-
tion may have a pathogenic role in human diseases. A
large body of evidence has already shown that aberrant
miRNA expression is implicated in most forms of human
cancer [25-27], but fewer studies have established a clear
link between miRNAs and human genetic disorders. Ini-
tially, there were two main (and contrasting) arguments
against the hypothesis of miRNAs as genes responsible for
human genetic diseases: (1) each miRNA is endowed with
such a basic role in the regulation of gene expression and
consequently in the regulation of basic cellular processes
that a significant alteration of their function is not com-
patible with cell survival and ultimately with life; and (2)
considering the great deal of redundancy in miRNA
actions, a significant alteration of the function of a single
miRNA may only give rise to subtle modifications in both
the cellular transcriptome and proteome, which are una-
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ble to determine a significant perturbation of biological
processes and ultimately lead to a diseased phenotype.

Our aim in this review is to provide an overview of the evi-
dence available to date which support the pathogenic role
of miRNAs in human genetic diseases, with a particular
focus on monogenic disorders. In order to achieve this
goal, we will first describe the types of mutations affecting
miRNA function that can result in human monogenic dis-
orders, giving some recently described examples. In the
second part of this review, we will give a broader picture
of the hypothetic involvement of miRNAs in the patho-
genesis of human monogenic diseases based on the
results obtained in vivo from the analysis of several animal
models characterized by either the global perturbation of
miRNA pathways or by the perturbation (either inactiva-
tion or overexpression) of single miRNAs.

Types of miRNA mutations with a pathogenic
role in human mendelian disorders

Given the mechanisms of action of miRNAs (see above),
three main types of mutation mechanisms affecting
miRNA function can be envisaged (Figure 1): (1) muta-
tions affecting primarily miRNAs, either point mutations
in the mature sequence or larger mutations (that is, dele-
tions or duplications of the entire miRNA locus); (2)
mutations in the 3' UTR of mRNAs that can lead to the
removal or to the de novo generation of a target recogni-
tion site for a specific miRNA; and (3) mutations in genes
which participate in the general processes of miRNA
processing and function and, therefore, are predicted to
impact on global miRNA function.

Mutations affecting primarily miRNAs

Large mutations

Likewise, protein-coding loci and also miRNA loci can be
subjected to large mutations, such as deletions or duplica-
tions. To date, there are no examples of such mutations
which are clearly associated with human mendelian dis-
eases. However, a careful analysis of the genomic organi-
zation of miRNAs reveals that a number of intragenic
miRNAs are localized within host genes (see above)
whose mutations are responsible for human genetic disor-
ders. By analysing the mutation spectrum previously
described for the latter disease genes in the Human Gene
Mutation Database (HGMD) [28], we found evidence that
some mutations do, indeed, significantly affect one or
more miRNAs (Table 1). This is the case, for instance, in
certain intragenic deletions responsible for Duchenne
muscular dystrophy, choroideraemia and Dent disease,
among others, which are also predicted to encompass
some miRNAs. It is of crucial importance to confirm these
predictions and to determine whether or not the deletion
of these miRNAs is able to play a role in the phenotype
observed. Furthermore, several miRNAs loci are also
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either deleted or duplicated (Table 1) in some well-known
human aneuploidy syndromes, and there is initial evi-
dence of their contribution to the pathogenic mechanisms
of the complex manifestations of these disorders [29].

Point mutations in miRNA mature sequences

Duan and colleagues, in 2007, described a single nucle-
otide polymorphism (SNP) within the seed region of
miR-125a. Through a series of in vitro analyses, the
authors demonstrated that this SNP in miR-125a, in addi-
tion to reducing miRNA-mediated translational suppres-
sion, significantly altered the processing from pri-miRNA
to pre-miRNA. Although this SNP has not been associated
with a disease status, these data suggest, for the first time,
that SNPs that reside within miRNA genes may, indeed,
impair miRNA biogenesis and alter target selection and,
therefore, have a potentially profound biological effect
[30].

The first example of point mutations in the mature
sequence of a miRNA with an aetiopathogenic role in a
human mendelian disease has been recently reported by
Mencia et al. [31]. They identified two different nucleotide
substitutions in the seed region of the human miR-96 in
two Spanish families affected by an autosomal dominant
form of deafness, namely DFNA50. In particular, both the
mutations, miR-96 (+13G>A) and (+14C>A), which were
not present in several unrelated normal-hearing Spanish
controls, were segregated in both of the families with a
hearing impairment. miR-96, together with miR-182 and
miR-183, is transcribed as a single polycistronic transcript
and is reported to be expressed in the inner ear. For this
reason, the authors also carried out a mutation screening
of miR-182 and miR-183 in the same cohort of patients,
tested for miR-96. However, they did not find any poten-
tial mutation, although this does not exclude the possibil-
ity that the latter two miRNAs may be involved in the
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Table I: Example of LARGE mutations, responsible for human genetic diseases, encompassing microRNA (miRNA) loci

Disease OMIM Inheritance Responsible Disease gene miRNA Type of Selected
pattern gene/locus locus involved in mutation references
the mutation involving the
miRNA
Choroideraemia  *300390 X-linked CHM Xq21.2 miR-361 Complete [106,107]
recessive miRNA deletion
Dent disease #300009 X-linked CLCN5 Xpll1.22 miR-500; miR- ~ Complete [108]
recessive 600; miR-188; miRNA deletion
miR-362-5p;
miR-362-3p;
miR-500; miR-
501; miR-502;
miR-532-5p;
miR-532-3p
Epidermolysis #226650 Autosomal COLI7AI 10q24.3 miR-936 Complete [109,110]
bullosa recessive miRNA deletion
(one allele)
Muscular #310200; X-linked DMD Xp2l.1 miR-548f-5 Complete [I-113]
dystrophy, #300376 recessive miRNA deletion
Duchenne/
Beker
Haemophilia A +306700 X-linked F8 Xq28 miR-1184 Complete [114-116]
recessive miRNA deletion
Beckwith- #130650 Autosomal HI19 I1pl5.5 miR-675 Complete [117]
Wiedemann dominant miRNA deletion
syndrome
Pantothenate #234200; Autosomal PANK?2 20p13-pl2.3 miR-103-2 Complete [118]
kinase- #607236 recessive miRNA deletion
associated
neurodegenerati
on/Harp
syndrome
Polycystic #173900 Autosomal PKDI 16p13.3-p13.12 miR-1225 Complete [119]
kidney disease | dominant miRNA deletion
HHH syndrome  #238970 Autosomal SLC25A15 13q14 miR-621 Complete [120]
recessive miRNA deletion
(one allele)
Down #190685 - Chromosome Chromosome  miR-99a; let-7c; miRNA [121-123]
syndrome 2| trisomy 21 miR-125b; miR- triplication
155; miR-802
Williams-Beuren  #194050 Autosomal 7ql1.23 7ql1.23 miR-590 Complete [124,125]
syndrome dominant deletion miRNA deletion
DiGeorge #188400 Autosomal 22ql1.2 22ql1.2 miR-648; miR-  Complete [126-128]
syndrome dominant deletion 185; miR-1306;  miRNA deletion
miR-1286; miR-
649; miR-301b;
miR-130b; miR-
650
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pathogenesis of other forms of deafness. The fact that
both the above families manifested the hearing loss post-
lingually indicated that probably neither of the two miR-
96 mutations resulted in impaired development of the
inner ear. Instead, they could have had an impact on the
regulatory role that miR-96 plays in the hair cells of the
adult cochlea which maintain the gene expression profiles
required for its normal function. In vitro experiments
showed that both mutations impaired, but did not abro-
gate, the processing of miR-96 to its mature form,
although an additional indirect effect on the expression of
miR-182 and miR-183 due to the miR-96 mutations can-
not be excluded. Furthermore, a luciferase reporter assay
confirmed that both mutations were able to affect the tar-
geting of a subset of selected miR-96 target genes, mostly
expressed in the inner ear. In contrast, no significant gain
of function was associated with these two mutations, at
least for the potentially new acquired miR-96 targets
investigated. In addition, after an ophthalmologic revi-
sion, no ocular phenotype was observed in individuals
carrying mutations in miR-96 (age range between 2 and
66 years), suggesting that its specific targets in the retina,
a site in which miR-96 is also strongly expressed, were not
critical for its function or that the translation of these tar-
gets was not markedly affected [31].

The finding of a single base change (A>T) in the seed
region of miR-96 in a mouse mutant (diminuendo) with a
progressive hearing loss phenotype, provided additional
support to the finding that a single base change in miR-96
is the causative mutation behind the hearing loss pheno-
type in both man and mouse [32]. In particular, the dimin-
uendo mutant showed progressive hearing impairment in
heterozygotes and profound deafness in homozygotes
associated with hair cell defects. Lewis and colleagues sug-
gested that the degeneration observed in homozygotes
could be a consequence of a prior dysfunction of the hair
cells. Bioinformatic analysis indicated that the mutation
has a direct effect on the expression of many genes,
including transcription factor genes, that are directly
required for hair cell development and survival. The large
number of genes whose expression is affected by miR-96
suggests that the mechanism that explains the effects of
the mutation may not be simple but, rather, may be the
result of a combination of different small effects that act
in concert to cause hair cell dysfunction [32].

Mutations in miRNA target sites

In animal cells, most miRNAs form imperfect hybrids
with sequences in the 3'-UTR, with the miRNA 5'-proxi-
mal 'seed' region (positions 2-8) providing most of the
pairing specificity [33,34]. However, evidence is also accu-
mulating that miRNAs may target mRNA-coding regions
[35]. Generally, miRNAs inhibit protein synthesis either
by repressing translation or by bringing about deadenyla-

http://www.pathogeneticsjournal.com/content/2/1/7

tion and degradation of mRNA targets [36]. Since more
than 700 miRNAs have been identified in the human and
mouse genomes [37], and also considering that each
miRNA can regulate, on average, the expression of 100-
200 target genes [38,39], the whole miRNA apparatus
seems to participate in the control of the gene expression
for a significant proportion of the mammalian gene com-
plement.

It is conceivable that some sequence variations falling
within the 3'-UTR of mRNA may alter miRNA recognition
sites, either by altering functional miRNA target sites or by
creating aberrant miRNA target sites. Both types of
sequence variations may potentially have deleterious
effects in the case of either miRNA-mRNA pairs endowed
with a biologically relevant (and non-redundant) role or
when the formation of an illegitimate miRNA target
occurs in mRNAs that are under selective pressure to avoid
target sites for that particular miRNA (that is, in the case
of the so-called anti-targets) [40].

One of the first animal disorders with a mendelian trans-
mission reported to be caused by dysregulation of a spe-
cific miRNA-mRNA target pair was the Texel sheep model.
The Texel sheep phenotype is characterized by an inher-
ited muscular hypertrophy that is more pronounced in
the hindquarters of sheep [41]. Clop et al. [41] demon-
strated that the myostatin (GDF8) gene of Texel sheep is
characterized by a G to A transition in the 3' UTR that cre-
ates a target site for mir-1 and mir-206, which are highly
expressed in the skeletal muscle. This sequence change
leads to a translational inhibition of the myostatin gene
and, hence, is responsible for the muscular hypertrophy of
Texel sheep [41].

There are now some examples of sequence variations in
the 3'-UTR of mRNAs altering miRNA recognition sites
which have been suggested to have a pathogenic role in
human genetic diseases. The first was reported by Abelson
et al. [42], who identified two independent occurrences of
the identical sequence variant in the binding site for the
miRNA hsa-miR-189 (now termed miR-24*) in the 3'-
UTR of the SLITRKI mRNA in familial cases of Tourette's
syndrome, a developmental neuropsychiatric disorder
characterized by chronic vocal and motor tics. This 3'-UTR
sequence variation in SLITRK1 was proposed in order to
determine an increased extent of repression of this gene
by hsa-miR-189 (miR-24*). It must be underlined, how-
ever, that the involvement of SLITRK1 in Tourette's syn-
drome has been subsequently questioned by other reports
[43-47]. The second example is represented by two differ-
ent point mutations in the 3'-UTR of the REEP1 gene
which have been associated with an autosomal dominant
form of hereditary spastic paraplegia (SPG31) [48,49].
These mutations, which alter the sequence of a predicted
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target site for miR-140, were found to segregate with the
disease phenotype and were not detected in a large set of
human controls. These data strongly suggest the patho-
genic role of the impaired miR-140-REEP1 binding in
some SPG31 families, although so far no functional data
have been provided to consolidate this hypothesis.

Georges and colleagues tried to address, in a more system-
atic way, the potential implications of sequence variations
in the 3'-UTR of mRNAs in the pathogenesis of human
diseases. They demonstrated, through SNP analysis, that
sequence variations creating or destroying putative
miRNA target sites are abundant in the human genome
and suggested that they might be important effectors of
phenotypic variation [50]. A list of additional sequence
variations altering putative miRNA recognition sites, and
with a potential role in human disease, can be found in a
review by Sethupathy and Collins [51]. The authors criti-
cally reviewed a number of studies that claimed that there
is an association between the presence of polymor-
phisms/mutations in miRNA target sites (poly-miRTSs)
and human diseases, giving a special emphasis on possi-
ble biases and confounding factors. They concluded that
only a few presented rigorous genetic and functional evi-
dence. The authors therefore suggested a set of concrete
recommendations in order to guide future investigations
of putative disease-associated poly-miRTSs [51].

Mutations impacting on global miRNA function

As previously described, a number of different proteins
are involved in the processing of miRNAs. Mutations
altering the function of these proteins are predicted to
determine a global alteration of miRNA function. This
aspect is exploited, for instance, in the experimental inac-
tivation of Dicer that is used to assess the biological con-
sequences of the global perturbation of miRNA activity in
whole organisms or specific tissues/cell types (see also
below). Complete loss-of-function mutations of certain
key members of the miRNA processing pathway (such as
Drosha and Dicer) are expected to be incompatible with
life and, therefore, are not believed to play a role in the
pathogenesis of human monogenic disorders. However,
there are two human diseases characterized by mutations
in genes involved in miRNA processing/activity, namely
DiGeorge syndrome and Fragile X syndrome. The DGCRS8
gene, which maps to chromosomal region 22q11.2, is
commonly deleted in DiGeorge syndrome [52], character-
ized by cardiovascular defects, craniofacial defects, immu-
nodeficiency and neurobehavioral alterations. As
previously mentioned, DGCRS8 is a component of the
Drosha complex and its haploinsufficiency in DiGeorge
syndrome patients may have a potential impact on
miRNA processing. However, also based on the results of
the targeted inactivation of the corresponding gene in
mouse [53], there are no data, thus far, which point to a
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functional effect of DGCR8 haploinsufficiency on miRNA
biogenesis.

The second example is represented by the Fragile X syn-
drome. The product of the FRM1 gene, whose loss-of-
function is responsible for this condition, is a selective
RNA binding protein. It has been proposed that the
FMRP1 protein may function as a translational repressor
of its mRNA targets at synapses by recruiting the RISC
complex along with miRNAs and by facilitating the recog-
nition between miRNAs and a specific subset of their
mRNA targets. This interaction is suggested to be impor-
tant in the process of synaptic plasticity which, instead, is
largely compromised in Fragile X syndrome patients
[54,55]. However, this hypothesis requires further investi-
gations. In conclusion, there is no evidence so far to sup-
port a direct role of altered global miRNA processing in
human hereditary disorders.

What other human genetic diseases are
potentially caused by miRNA dysfunction?

The number of cases in which mutations in miRNA and in
miRNA targets have proven to be firmly associated with
monogenic disorders is still limited (see above). However,
we expect the contribution of miRNAs, and related path-
ways to the pathogenesis of these conditions, to increase
in the near future, following both a better knowledge of
their biological function and the advancement of high-
throughput mutation detection approaches [56-58]. We
will now try to make some hypotheses on the possible dis-
eases in which miRNAs may have a pathogenic role,
mainly based on the results obtained from the analysis of
animal models.

microRNAs and heart 'diseases’

The heart is the first organ to form and to function during
vertebrate embryogenesis [59]. Perturbations in normal
cardiac development and function result in a variety of
cardiovascular diseases, which are the leading cause of
death in developed countries [60].

The first indication of the global involvement of miRNAs
in heart development and function was derived from the
analysis of conditional knockout mice carrying a cardiac-
specific inactivation of the Dicer enzyme. As described
above, Dicer plays a key role in miRNA biogenesis and its
inactivation is predicted to cause a general deficiency of
the mature forms of all miRNAs.

Chen and colleagues reported that cardiac-specific knock-
out of the Dicer gene led to rapidly progressive dilated car-
diomyopathy, heart failure and postnatal lethality. Dicer
mutant mice showed misexpression of cardiac contractile
proteins and profound sarcomere disorder. Functional
analyses indicated significantly reduced heart rates and a
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decreased fractional shortening in Dicer mutant hearts.
Furthermore, this study demonstrated, for the first time,
the essential role of Dicer in cardiac contraction and also
indicated that miRNAs play a critical role both in normal
cardiac function and under pathological conditions [61].

Moreover, da Costa and colleagues found that an induci-
ble deletion of Dicer in the adult mouse heart results in a
severe alteration of myocardial histopathology, suggesting
a crucial role for this enzyme in ensuring the integrity of
the postnatal heart. Interestingly, Dicer depletion in the
juvenile heart provoked an overall tendency to arrhyth-
mogenesis and less marked myocyte hypertrophy, but its
inactivation in the adult myocardium gave rise to myocyte
hypertrophy and angiogenic defects. These findings seem
to imply the presence of differences in the biological role,
as a whole, of miRNAs between the juvenile and the adult
myocardium [62].

The generation of cardiac disease-like phenotypes in ani-
mal models may not only be caused by a global alteration
of miRNA function but also by the dysfunction of specific
miRNAs. For instance, miR-1-2 appears to be involved in
the regulation of diverse cardiac and skeletal muscle func-
tions, including cellular proliferation, differentiation, car-
diomyocyte hypertrophy, cardiac conduction and
arrhythmias [63]. miR-1, together with another heart-spe-
cific miRNA (miR-133a), is known to be transcribed by a
duplicated bicistronic genetic locus (miR-1-1/miR133a-2
and miR-1-2/miR133a-1) sharing identical sequences of
the mature miRNAs. Mice lacking miR-1-2 present a spec-
trum of abnormalities, ranging from ventricular septal
defects and early lethality to cardiac rhythm disturbances.
These mice also featured a striking cell-cycle abnormality
in myocytes, leading to hyperplasia of the heart with
nuclear division persisting postnatally. Remarkably, the
persistence in these mice of the other identical copy of
miR-1-2 (thatis, miR-1-1) did not compensate for the loss
of miR-1-2, at least for many aspects of its function. While
it is likely that mice lacking both miR-1-1 and miR-1-2
will have increasingly severe abnormalities, the range of
defects upon the deletion of miR-1-2 highlighted the abil-
ity of miRNAs to regulate multiple diverse targets in vivo
[63]. The subtle dysregulation of numerous developmen-
tal genes may contribute to the embryonic defects
observed in miR-1-2 mutants. These included: (1) Hrt2/
Hey2, a member of the Hairy family of transcriptional
repressors that mediates Notch signalling, which can itself
cause heart disease [64]; and (2) Handl, a bHLH tran-
scription factor involved in ventricular development and
septation that, in combination with Hand2 (a paralog of
Hand1), is known to regulate expansion of the embryonic
cardiac ventricles in a gene dosage-dependent manner
[65]. Furthermore, in miR-1-2 mutants, the observed
abnormality in the propagation of cardiac electrical activ-
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ity, despite normal anatomy and function, was correlated
with the upregulation of the direct target Irx5, a transcrip-
tion factor, resulting in ventricular repolarization abnor-
malities and a predisposition to arrhythmias.

Jiang et al. added one more piece to the puzzle represented
by the miR-1/miR-133a cluster. They extensively charac-
terized genetically engineered mice deficient for either
miR-133a-1, or miR-133a-2, or both as well as mice over-
expressing miR-133a [66]. While miR-133a-1 and miR-
133a-2 seemed to have redundant functions and did not
cause obvious cardiac abnormalities when deleted indi-
vidually, targeted deletion of both miRNAs resulted in car-
diac malformations and embryonic or postnatal lethality.
miR-133a double knockout mice displayed two distinct
lethal phenotypes: (1) either large ventricular sept defects
(VSDs), dilated right ventricles, and atria leading to death
shortly after birth; or (2) survival into adulthood, no VSDs
but dilated cardiomyopathy (DCM), cardiac fibrosis and
heart failure. Surprisingly, miR-133a deficiency did not
lead to hypertrophic cardiomyopathy, as one would have
been expected from previous studies, in which miR-133a-
antagomir treatment induced cardiac hypertrophy in mice
[67]. Several genes involved in cardiomyocyte cell cycle
control, such as Cyclin D1, Cyclin D2 and Cyclin B1, were
found to be significantly upregulated in miR-133a defi-
cient hearts as well as several smooth muscle genes, such
as smooth muscle-Actin, Transgelins, Calponin I and the myo-
genic transcription factor SRF.

In a further attempt to dissect the effects of miR-133a on
cardiomyocyte proliferation, Liu et al. [68] overexpressed
miR-133a under the control of the cardiac 3-myosin heavy
chain promoter. Surprisingly, transgenic animals died by
embryonic day 15.5 (E15.5) due to VSDs and diminished
cardiomyocyte proliferation, which resulted in ventricular
walls only consisting of two to three cell layers that were
unable to fulfill the hemodynamic needs of the develop-
ing mouse [66].

Morton et al. reported that miR-138 is expressed in spe-
cific domains of the zebrafish heart and is required to
establish appropriate chamber-specific gene expression
patterns. Disruption of miR-138 function led to expan-
sion in the expression of ventricular-specific genes, nor-
mally restricted to the atrio-ventricular valve region, and,
ultimately, to disrupted ventricular cardiomyocyte mor-
phology and cardiac function. Furthermore, the authors
demonstrated that miR-138 helps in establishing discrete
domains of gene expression during cardiac morphogene-
sis by targeting multiple members of the retinoic acid sig-
naling pathway [69].

van Rooij and colleagues described cardiac hypertrophy

and failure in a mouse model overexpressing mir-195,
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which is generally upregulated in hypertrophic human
hearts [70]. Overexpression of miR-195 under the control
of the a-myosin heavy chain (Mhc) promoter initially
induced cardiac growth with disorganization of cardiomy-
ocytes, which progressed to a dilated heart phenotype by
6 weeks of age. More striking was the dramatic increase in
size of individual cardiomyocytes in miR-195 transgenic
mice compared to normal mice. Furthermore, ratios of
heart weight to body weight were also dramatically
increased in miR-195 transgenic (Tg) animals as com-
pared to wild-type littermates, indicating that overexpres-
sion of miR-195 was sufficient to stimulate cardiac
growth. Thus, the cardiac remodelling induced in the
miR-195 Tg animals was specifically caused by the func-
tional effects of this miRNA rather than a general nonspe-
cific effect resulting from miRNA overexpression,
suggesting that increased expression of miR-195 induced
hypertrophic signalling, leading to cardiac failure.

Based on all the previously described findings it is tempt-
ing to speculate a possible role of specific miRNAs in
human genetic forms of heart hypertrophy and failure.
This hypothesis is also supported by the dysregulation of
miRNA expression observed in several cardiovascular dis-
eases in man [71-73].

microRNAs and central nervous system (CNS)
'diseases’

Multiple lines of evidence indicate the potential role of
miRNAs in neuronal cell development and maturation.
Both the mouse and human brain express a large spec-
trum of distinct miRNAs compared with other organs
[74,75]. Therefore, the implications of dysregulation of
miRNA networks in human diseases affecting the CNS are
potentially enormous.

In recent years, different conditional Dicer null mouse
lines in the brain have been generated. They have pro-
vided initial insight into the in vivo role of miRNAs in the
mammalian CNS and particularly in the neuronal main-
tenance of the mouse brain [76-79].

Schaefer and colleagues [76] described the phenotypic
characterization of Dicer null mice in Purkinje cells of the
cerebellum. They performed the inactivation of Dicer
exclusively in the post-mitotic Purkinje cells by using the
Purkinje cell-specific Pcp2 promoter-driven Cre recombi-
nase. This inactivation led to the relatively rapid disap-
pearance of cerebellar-expressed miRNAs followed by a
slow degeneration of Purkinje cells. The loss of Dicer and
the decay of miRNAs had no immediate impact on
Purkinje cell function, as assessed by electrophysiological
studies and analysis of animal locomotion. However, the
continuous lack of miRNAs led eventually to Purkinje cell
death and ataxia, suggesting that a long-term absence of

http://www.pathogeneticsjournal.com/content/2/1/7

miRNAs in these cells results in a neurodegenerative proc-
ess [76].

In a recent work, the inactivation of Dicer in the cortex and
hippocampus beginning at embryonic day 15.5 resulted
in dramatic effects on cellular and tissue morphology and
led to gross brain malformations including microcephaly,
increased brain ventricle size, and reduction in size of
white matter tracts, leading to an early postnatal death
[80]. Furthermore, mutant mice were ataxic with visible
tremors during motility. Ataxic gait was detected by post-
natal day 14-15, but often occurred as early as postnatal
day 12. Dicer mutant animals also displayed hind limb
crossing, typical of animals with motor impairment.
Therefore, loss of miRNA function in some mouse brain
regions during late development results in a significantly
decreased lifespan as a consequence of severe malforma-
tions as well as motor impairments due to an increased
cortical apoptosis [77].

To determine the role of miRNAs in dopaminoceptive
neurons, Cuellar et al. ablated Dicer in mice by using a
dopamine receptor-1 (Dr-1) promoter-driven Cre. The
mutant animals displayed a range of phenotypes includ-
ing ataxia, front and hind limb clasping, reduced brain
size and smaller neurons. Surprisingly, dopaminoceptive
neurons without Dicer survived during the life of the ani-
mal in contrast with other mouse models in which neuro-
degeneration was observed in the absence of Dicer [77].

miRNAs have also been studied in early neurogenesis dur-
ing the development of the mammalian cerebral cortex
and the switch of neural stem and progenitor cells from
proliferation to differentiation. Dicer ablation in neuroep-
ithelial cells at embryonic day (E) 9.5 resulted in massive
hypotrophy of the postnatal cortex and death of the mice
shortly after weaning. Remarkably, the primary target cells
of Dicer ablation, the neuroepithelial cells and the neuro-
genic progenitors derived from them, were unaffected by
miRNA depletion with regard to cell cycle progression,
cell division, differentiation and viability during the early
stage of neurogenesis and only underwent apoptosis start-
ing at E14.5, suggesting that progenitors are less depend-
ent on miRNAs than their differentiated progeny [79].

miRNA function was studied also for another part of the
CNS (that is, the retina). Damiani et al. described a partial
ablation of Dicer in the developing mouse retina by using
a Cre line under the Chx10 promoter, a gene mostly
expressed in retinal progenitors and specific adult retinal
interneuronal cells. These mice apparently showed no vis-
ible impact on early postnatal retinal structure and func-
tion. Retinal lamination appeared normal and all
expected retinal cell types were represented. However, as
observed for the other Dicer null mutants, progressive and
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widespread structural and functional abnormalities were
detected, culminating in loss of photoreceptor-mediated
responses to light and extensive retinal degeneration [78].
Therefore, the observation that progressive retinal degen-
eration occurred after removal of Dicer raises the possibil-
ity that miRNAs are involved in retinal neurodegenerative
disorders.

In summary, although removing Dicer is conceptually a
crude experimental approach, the aforementioned results
support the hypothesis that defects in the miRNA regula-
tory network in the brain are a potential cause of neurode-
generative disease.

A functional role for miRNAs in more specific neurologi-
cal processes is emerging, and their dysfunction could
have direct relevance for our understanding of neurode-
generative disorders [81]. This conclusion is supported by
several in vitro examples using both gain- and loss-of-func-
tion experiments. For example, the introduction of artifi-
cial miRNAs mimicking upregulation or antisense
oligonucleotides induces loss of function of primary neu-
rons in culture [82-85].

The next challenge will be to characterize in vivo individ-
ual miRNAs and specific families of miRNAs in depth,
which are predicted to contribute to the proper CNS func-
tion. An initial step towards this goal is the recent study of
Walker and Harland. The authors show through loss-of-
function experiments that in Xenopus laevis miR-24a is
necessary for proper neural retina development by regu-
lating apoptosis through Caspase 9 targeting [86].

microRNAs and immune system 'diseases’
Vertebrates have evolved complex genetic programmes
that simultaneously regulate the development and func-
tion of hematopoietic cells, resulting in the capacity to
activate specific responses against invading foreign patho-
gens while maintaining self-tolerance. From recent stud-
ies, miRNAs are emerging as major players in the
molecular circuitry that controls the development and dif-
ferentiation of haematopoietic lineages [87].

Genetic disruption of different steps in miRNA biogenesis
in mice has highlighted the key role of miRNAs during
haematopoiesis. Dicer ablation in the T-lineage, whilst
not abolishing the development of T-lymphocytes,
affected their functionality [87,88]. Interestingly, ablation
of Dicer in regulatory T cells (Treg cells) resulted in a much
more severe phenotype. Mice lacking Dicer expression in
Treg cells failed to differentiate functional Treg cells and
developed a severe autoimmune disease, leading to death
within the first few weeks of life [89].

http://www.pathogeneticsjournal.com/content/2/1/7

Knocking-out Dicer activity in early B-cell progenitors
determined a block at the pro-B cell stage during the dif-
ferentiation process leading to mature activated B-cells.
Gene-expression profiling revealed a miR-17-92 signature
in the 3'UTRs of genes upregulated in Dicer-deficient pro-
B cells; the proapoptotic molecule Bim, a top miR-17-92
target, was also highly upregulated. Surprisingly, B cell
development was partially rescued by ablation of Bim or
transgenic expression of the prosurvival protein Bcl-2
[90].

In mice the specific role of single miRNAs in the develop-
ment and function of the immune system is starting to be
elucidated through targeted deletion approaches. The pio-
neer knockout of miR-155 in mice (the first mouse knock-
out for a single miRNA) revealed an essential role in the
acquired immunity for this miRNA. In fact, despite miR-
155 null mice developed normally, immune system anal-
ysis revealed that miR-155 depletion led to pleiotropic
defects in the function of B cells, T cells and dendritic cells.
These mice were unable to gain acquired immunity in
response to vaccination, demonstrating that miR-155 is
indispensable for normal adaptive immune responses
[91,92].

Another functional example derives from the study of
Ventura et al. (2008) who demonstrated that the miR-17-
92 cluster is involved in controlling B-lymphocyte prolif-
eration. Deletion of this miRNA cluster was lethal in mice
resulting in lung hypoplasia, ventricular sept defects and
impairment of the pro-B to pre-B transition. Absence of
miR-17-92led to increased levels of the pro-apoptotic pro-
tein Bim and inhibited B cell development at the pro-B to
pre-B transition. Furthermore, while ablation of miR-
106b-25 or miR-106a-363 (the two paralogous clusters)
had no obvious phenotypic consequences, compound
mutant embryos lacking both miR-106b-25 and miR-17-
92 died at mid-gestation [93]. On the contrary, over-
expression of miR-17-92 cluster in mice led to lympho-
proliferative and autoimmune diseases that were associ-
ated with self-reactive antibody production [94].

Finally, Johnnidis et al. described the generation of a
knockout mouse for miR-223, which highlighted its role
in granulocyte differentiation. The myeloid-specific miR-
223 negatively regulated progenitor proliferation and
granulocyte differentiation. Moreover, mutant mice had
an expanded granulocytic compartment resulting from a
cell-autonomous increase in the number of granulocyte
progenitors. These data support a model in which miR-
223 acts as a fine-tuner of granulocyte production and the
inflammatory response [95].

The fact that miRNAs are involved in the modulation of T
cell selection, T cell receptor sensitivity as well as Treg cell
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development in normal immune responses, suggests that
these molecules may also be involved in the development
of immune system disorders of genetic origin such as
immunodeficiencies or autoimmune diseases.

microRNAs and 'diseases' affecting other tissues
In mouse, conditional inactivation of Dicer has been
achieved in different other tissues in order to study the
global function of miRNAs [23,96-101]. Using transgenes
to drive Cre expression in discrete regions of the limb mes-
oderm, Harfe et al. found that removal of Dicer deter-
mined developmental delays, due in part to massive cell
death as well as to dysregulation of specific gene expres-
sion, and brought to the formation of a much smaller
limb. Strikingly, however, the authors did not detect
defects in basic patterning or in tissue-specific differentia-
tion of Dicer-deficient limb buds [23]. This class of skele-
tal defects was previously observed in mice with
compound mutations in Prx1 and Prx2 genes [102].

To better understand the role of miRNAs in skin- and hair
follicle biology, Andl and colleagues generated mice carry-
ing an epidermal-specific Dicer deletion. These mice pre-
sented stunted and hypoproliferative hair follicles.
Normal hair shafts were not produced in the Dicer mutant
and the follicles lacked stem cell markers and degener-
ated. In contrast to decreased follicular proliferation, the
epidermis became hyperproliferative. These results reveal
the critical role played by Dicer in the skin and the key
aspect that miRNAs may have in epidermal and hair-folli-
cle development and function [96]. Moreover, the exist-
ence of skin-specific miRNAs involved in normal
epidermal and follicular development, such as the miR-
200, the miR-19 and miR-20 families, indicate that their
therapeutic expression or inhibition might also be rele-
vant to epidermal pathology [103].

To study Dicer function in the later events of lung forma-
tion, Harris and collaborators inactivated Dicer in the
mouse lung epithelium using a Shh-Cre allele. As a result,
the mutant lung presented a few large epithelial pouches
as opposed to the numerous fine branches that are seen in
a normal lung. Phenotypic differences between mutant
and normal lungs were apparent, significantly, even
before detection of an increase in epithelial cell death,
leading the authors to propose that Dicer may play a spe-
cific role in regulating lung epithelial morphogenesis
independent of its requirement in cell survival [97].

Dicer activity is essential for skeletal muscle development
during embryogenesis and postnatal life. O'Rourke and
colleagues (2007) showed that Dicer inactivation in skel-
etal muscle resulted in lower levels of muscle-specific
miRNAs. Moreover, Dicer muscle mutants died perina-
tally and were characterized by skeletal muscle hypopla-
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sia. Reduced skeletal muscle, in turn, was accompanied by
abnormal myofibre morphology. The skeletal muscle
defects associated with loss of Dicer function were
explained by increased apoptosis. Furthermore, decrease
in muscle mass in Dicer mutants was strikingly similar to
the phenotypes associated with muscular dystrophies and
aged skeletal muscle. This finding suggests that, in
humans, DICER mutations, or disrupted miRNA-medi-
ated gene regulation, should contribute to skeletal muscle
myopathy and age-related sarcopenia [98].

The study of Pastorelli and co-workers [100] demon-
strated that loss of Dicer in the developing mouse repro-
ductive tract, under the control of Amhr2-Cre-mediated
deletion, resulted in morphologic and functional defects
in the reproductive tracts of female but not of male mice
(before 3 months of age).

Recently, Sekine and colleagues have described the condi-
tional Dicer ablation in the mouse liver. This resulted in
prominent steatosis and in the depletion of glycogen stor-
age. Dicer-deficient liver exhibited increased growth-pro-
moting gene expression and robust expression of fetal
stage-specific genes. The consequence of Dicer elimina-
tion included both increased hepatocyte proliferation and
overwhelming apoptosis [101].

Finally, two different Dicer knockout strategies demon-
strated that miRNAs are required for the development and
differentiation of sensory epithelia [104] and the mainte-
nance of the sensory neurons of the inner ear [105]. Based
on studies carried out in animal models, it is clear that
miRNA dysfunction may lead to severe alterations in the
function of all tissues/organs that have been analysed up
to now. In the majority of the aforementioned cases, the
aberrant phenotypes observed are the consequence of a
global impairment of miRNA processing (that is, Dicer
knockout approaches), a condition that is highly unlikely
to contribute to the pathogenesis of human genetic dis-
eases. Nevertheless, the fact that in some organs (that is,
the heart, the eye and the immune system) the dysfunc-
tion of single miRNAs may underlie phenotypes, strongly
resembling those observed in human disease, suggests
that miRNAs should be considered potential candidates
in the pathogenesis of human genetic disorders, even
monogenetic forms, likewise protein-coding genes.

Conclusion

microRNAs are emerging as key regulators of the cell tran-
scriptome due to their ability to finely tune gene dosage.
In the last few years, they have been shown to be involved
in the regulation of many cellular processes and their role
in the proper differentiation and function of tissues and
organs is only starting to be unravelled. It is also becom-
ing increasingly clear that miRNAs, similarly to protein-
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coding genes, may harbour mutations leading to human
genetic conditions, even 'classical' monogenic forms. The
number of cases in which mutations in miRNAs, or in
their targets, have been convincingly shown to have a
pathogenic role in human genetic diseases is still limited.
This may not only be explained by the recent characteriza-
tion of miRNAs at the genomic level, which will now
allow us to carry out the appropriate analyses, but also by
the fact that the 3'UTR of mRNAs have, until recently,
been generally neglected as potential sources of sequence
variations with a potentially pathogenic effect in genetic
diseases. However, both the improvement in experimen-
tal procedures, aimed at the identification of mutations
based on efficient sequencing protocols, and the increas-
ing knowledge in miRNA function are predicted to fill the
latter gaps, underscoring the role played by miRNAs in the
pathogenesis of human genetic disorders in the coming
years.
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