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Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease characterized by the
formation of renal cysts. This disease can be caused by mutations in two genes, PKD1 and PKD2,
which encode polycystin-1 (PC-1) and -2 (PC-2), respectively.

PC-1 is a large plasma membrane receptor involved in the regulation of several biological functions
and signaling pathways, and PC-2 is a calcium channel of the TRP family. The two proteins associate
in a complex to prevent cyst formation, but the precise mechanism(s) involved remain largely
unknown.

This review will focus on recent advances in our understanding of the functions of polycystins and
their role in signal transduction.

Increased activity of the mammalian target of rapamycin (mTOR) kinase has been observed in cysts
found in ADPKD tissues. Rapamycin has been shown to have beneficial effects in rodent models of
polycystic kidney disease, prompting the initiation of pilot clinical trials with human patients.
Furthermore, a direct role for PC-1 in the regulation of cell growth (size) via mTOR has recently
been demonstrated.

Major advancements in the study of mTOR biology have highlighted that this kinase exists in
association with two different complexes, mTOR complex 1 (mTORC1) and mTOR complex 2
(mTORC2). The mTORC1 complex regulates cell growth (size), proliferation, translation and
autophagy, and mTORC2 regulates the actin cytoskeleton and apoptosis. Interestingly, mTORC2
has been shown to contain the kinase responsible for the phosphorylation of Akt at Serine 473.
Previous studies have shown that PC-1 controls the PI 3-kinase/Akt cascade to regulate apoptosis
and the actin cytoskeleton, suggesting that this receptor might regulate mTOR at several levels.

This review aims to discuss three different, inter-related themes emerging from the literature: (i)
studies performed in our and other laboratories collectively suggest that PC-1 might be able to
differentially regulate the two mTOR complexes; (ii) several studies point to genetic and functional
cross-talk between the PKD and TSC genes, although the molecular details remain obscure; and
(iii) studies performed in mammals and in the unicellular algae Chlamidomonas Reinhardtii might
highlight a link between cilia, regulation of cell size and regulation of the cell cycle.
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ADPKD: genetics and proposed mechanisms of 
cystogenesis
Autosomal dominant polycystic kidney disease (ADPKD)
is a frequent genetic disease, affecting between 1:500 and
1:1000 of the general population [1-3]. The hallmark of
the disease is bilateral renal cyst formation, although a
plethora of extra-renal manifestations have been reported.
These include liver and pancreatic cysts as well as cardio-
vascular complications (for review of the clinical aspects
of the disease, see [1]). Two genes have been linked to this
disease: PKD1, which is mutated in 85% of cases, and
PKD2, which is mutated in most of the remaining cases.
Numerous mutations have been reported along the length
of these two genes; most are loss-of-function mutations
predicted to inactivate the affected allele [1-3].

Genetic mechanism of cystogenesis
ADPKD is inherited in an autosomal dominant manner,
but it has been suggested that it is recessive at the molecu-
lar level [4]. Analysis of the epithelia derived from renal or
liver cysts has revealed that the normal inherited allele
undergoes a somatic mutation, resulting in homozygous
loss of either the PKD1 or PKD2 gene [4,5]. This 'second
hit' causes a single affected epithelial cell to over-grow and
generate a clonal outpouching diverticulum, which even-
tually disconnects from the renal tubule. In some of the
cysts in which homozygous inactivation of one PKD gene
(either 1 or 2) is not observed, mutations in the other PKD
gene have been found, suggesting that trans-heterozygos-
ity of the two genes is sufficient to induce cyst formation
[6]. Based on these findings, a 'threshold model' of
cystogenesis has been proposed, in which heterozygosity
is not sufficient to induce renal cystogenesis, but a mini-
mum level of activity of the PKD1 and PKD2 gene prod-
ucts, the polycystins, is required to prevent cystogenesis.
Any dysfunction causing polycystin activity to fall below
such a threshold would lead to cyst formation, even
though a complete loss of function does not appear to be
necessary. Several findings from studies in animal models
appear to support this model: (i) heterozygosity of the
Pkd1 or Pkd2 gene is not sufficient to cause renal cyst for-
mation in mice, possibly due to a low rate of second hits
in the murine kidney, whereas homozygous inactivation
causes renal cystogenesis in utero [7,8]; (ii) conditional
inactivation of the second allele in the kidney results in
renal cystogenesis with a variably severe phenotype
depending on the time of inactivation [9,10]; (iii) a
mouse model carrying an unstable Pkd2 allele that spon-
taneously undergoes somatic inactivation displays the
ADPKD phenotype when crossed with a Pkd2-null mouse
[11]; (iv) trans-heterozygous Pkd1+/-:Pkd2+/- mice display
markedly more severe cystic kidney disease than single
heterozygous mutants [12]; and (v) a mouse model carry-
ing an aberrantly spliced variant of the Pkd1 gene, lower-

ing its expression to 13-20% of normal levels, suffers renal
cystogenesis [13].

Intriguingly, a recent study has identified ADPKD families
carrying homozygous inheritance of mild mutations in
the PKD1 gene, which resulted in PKD; this finding fur-
ther suggests that gene dosage might be important [14].
Thus, loss of function (complete or partial) of the PKD1
and 2 genes appears to be the most common mechanism
of renal cystogenesis in ADPKD.

It should be taken into account, however, that overexpres-
sion of the human or murine PKD1 or 2 genes in mice is
sufficient to induce renal cyst formation [15-17]. There-
fore, we cannot exclude the possibility that a few cysts in
ADPKD might result from enhanced activity of the two
genes.

Finally, although haplo insufficiency does not seem to be
involved in the mechanism of cystogenesis, it is most
likely the cause of some of the other systemic and non-
focal manifestations of the disease, such as some of the
cardiovascular defects. Evidence from mice and cellular
models seem to support this idea [18,19].

Molecular mechanism(s) of cystogenesis
The studies mentioned above strongly point to loss of
function as the most common mechanism of cyst forma-
tion, but how does a lack of PKD gene products result in
cystogenesis? A large body of literature has been pub-
lished on the characterization of the cystic epithelia of
ADPKD kidneys. More recently, the generation of mouse
models mimicking the disease has allowed for the confir-
mation of several of the original observations made in
humans. These studies have helped to build a general con-
sensus on some key features of these epithelia: (i) matrix
deposition appears to be defective, with thickening of the
basement membrane [20]; (ii) increased death by apopto-
sis has been consistently observed in human and in
mouse specimens [10,21,22]; (iii) proliferation seems to
be enhanced in the cystic epithelia, although to a low
extent, causing a very slow expansion of the cystic epithe-
lia over time [23] and making it difficult to visualize sharp
differences in proliferation markers in slowly progressing
renal cystic models that mimic the human disease [10];
and (iv) there is enhanced fluid secretion towards the
lumen of the cyst, mostly driven by cAMP [24,25].

More recently, upregulation of the mTOR pathway has
been observed in the cystic kidneys of ADPKD specimens,
as well as in a series of rodent models of PKD [[26-29],
also see below]. Rapamycin, an inhibitor of mTOR, has
been shown to protect these animal models, as well as
ADPKD patients, from cyst expansion, possibly by reduc-
ing proliferation [26,29-31].
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Currently, drugs targeting proliferation or cAMP produc-
tion (and fluid secretion) are considered the most prom-
ising approaches to slow down cyst expansion and some
are currently being tested in clinical trials [2,3].

Although enhanced proliferation and secretion might
partly explain the mechanism involved in the expansion
of the cysts, these factors do not explain how a cyst ini-
tially arises. A very appealing recent hypothesis has been
raised that states that the planar cell polarity (PCP) of the
renal tubule might be affected in cystic kidney disease and
could be the initiating defect [32]. Several lines of evi-
dence support this hypothesis.

First, it has been shown that the distal and collecting duct
tubules undergo a PCP program of oriented cell division,
leading to their elongation in the postnatal kidney. This
programme appears to be disrupted in mice developing
cysts in the collecting duct [33,34].

Second, a different mechanism, which still relies on PCP,
has been shown to be defective during embryonic devel-
opment: convergent extension movements might contrib-
ute to tubule elongation in developing nephrons [35].
This process appears to be defective in a mouse model of
cystic kidney disease due to inactivation of Wnt9b [35].

Third, the inversin gene, which is mutated in neph-
ronophthisis, another cystic kidney disease, has been
shown to regulate the Wnt pathway and to allow for a
switch between canonical (β-catenin dependent) and
non-canonical (also called PCP) pathways in response to
the bending of cilia [36].

Finally, a recent study has shown that inactivation of one
of the mammalian orthologs (Fat4) of the tumour-sup-
pressing atypical cadherin Fat, a major regulator of PCP in
Drosophila melanogaster, in the kidney results in cystic kid-
ney disease and defective mitotic spindle orientation [37].

Taken together, these data suggest that cytoarchitectural
defects caused by dysfunctional PCP might be the basis of
cyst initiation. It should be noted, however, that no evi-
dence has been provided to date to show that the PKD1 or
2 genes are involved in the regulation of PCP. Bonnet et al.
have recently reported defective mitotic spindle orienta-
tion in Pkd1+/- kidneys. However, this defect was accompa-
nied by the presence of only a few cysts, possibly due to a
low rate of somatic inactivation of the Pkd1 gene in the
murine kidney as mentioned above [28]. Defective
mitotic spindle orientation in the absence (or in the pres-
ence of a very low rate) of renal cyst formation suggests
that this defect might not be sufficient to cause renal
cystogenesis. The same authors also showed that haplo
insufficiency of the Pkd1 gene does not cause PCP defects

in the inner ear [28]. This result is not surprising when
considering that most of the phenotypes caused by muta-
tion of the Pkd1 or Pkd2 genes cannot be observed in het-
erozygotes. In order to determine the potential role of
these two genes in PCP, studies should be performed on
homozygously mutant embryos or by tissue-specific inac-
tivation of both alleles of the Pkd1 or Pkd2 genes in the
cochlea and/or in the kidney.

The polycystins
The gene products of PKD1 and 2, polycystin-1 and -2
(PC-1 and PC-2), assemble through coiled-coil domains
present in their intracellular C-termini to form a func-
tional complex, the activity of which is believed to be
essential to prevent renal cystogenesis [38-41]. Most of
their activities have been attributed to this PC-1/2 com-
plex, which explains the identical phenotype observed in
ADPKD1 and ADPKD2 patients [41]. However, these two
proteins are also expected to have independent functions
and it has been shown that the establishment of left-right
asymmetry in the developing mouse embryo requires PC-
2, but not PC-1 [42].

The biochemistry of the polycystins
PC-1 is a large plasma membrane receptor consisting of
4302 amino acids (aa), with an extracellular N-terminal
portion of ~3,000 aa, 11 transmembrane domains and a
relatively short intracellular C-tail of 198 aa [43-45]. The
N-terminus contains a novel combination of protein-pro-
tein interacting domains, including leucine-rich repeats
(LRRs), a C-type lectin domain, 16 PKD repeats (IgG-like
domains) and an REJ domain, which is named for its
homology with the sea urchin Receptor for Egg Jelly (Fig-
ure 1A). The protein is predicted to have a molecular mass
of 462 kDa [43,44].

The study of PC-1 biochemistry and function has been
challenging due to its low abundance and large size. Stud-
ies using heterologously over-expressed, human, full-
length PC-1 have shown that the protein is heavily glyco-
sylated, reaching a final estimated mass of ~520 kDa
[46,47]. Just N-terminal to the first transmembrane
domain, the protein contains a G-protein coupled recep-
tor proteolytic site (GPS), an auto-proteolytic site that
results in the cleavage of PC-1 into two fragments: an N-
terminal fragment (NTF, ~400 kDa) corresponding to the
extracellular portion of the protein and a C-terminal frag-
ment (CTF, ~150 kDa) composed of the remainder of the
protein (Figure 1A) [48,49]. The cleaved NTF can either be
released or remain tethered to the CTF fragment. PC-1 is
not completely cleaved at the GPS and the full-length
uncleaved protein co-exists with the cleaved version in
cells (Figure 1A) [48]. Cleavage at the GPS has been
shown to be essential for PC-1 function both in vitro and
in vivo [48,50]. Mice carrying a single point mutation at
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the GPS, which prevents the cleavage of PC-1, survive to
birth, but develop polycystic kidney disease, resulting in
renal failure in the first few weeks of life [50]. Therefore, it
appears that the GPS is essential for some of the functions
of PC-1, including preventing renal cyst formation in the

distal and collecting duct tubule; the uncleaved product is
also likely to play an important role [50].

The intracellular C-tail of PC-1 contains a coiled-coil
domain that is responsible for mediating interaction with
PC-2 and other proteins [38-40] and a consensus site for

Schematic representation of the polycystinsFigure 1
Schematic representation of the polycystins. A. Polycystin-1 is a large plasma membrane receptor that undergoes a 
series of cleavage events to generate several different species co-existing within the same cell and most likely carrying out dis-
tinct functions. The protein exists as an uncleaved polypeptide of 4302 amino acids (aa) (I) and can be cleaved at its G-protein 
coupled proteolytic site, generating an N-terminal fragment (NTF) that can be released (II) or remain tethered to the C-termi-
nal fragment (CTF) (III) [48]. Two additional products generated by cleavage at yet-to-be-identified sites release either the 
entire C-terminal tail (IV) [52] or the last 112 aa (V) [54]. B and C. PC-1 and PC-2 have been shown to interact through 
coiled-coil domains located in their cytoplasmic C-terminal tail. The precise localization and topology of the complex remains 
to be determined. The two proteins might co-localize at the plasma membrane, where PC-2 would regulate calcium influx from 
the extracellular compartment (A) [39]. This might occur in some subcellular compartments such as the primary cilium. Alter-
natively, the plasma membrane pool of PC-1 might interact with the endoplasmic reticulum (ER) pool of PC-2, regulating its 
calcium release from the ER (B) [60].
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interaction with heterotrimeric G-proteins [51]. The C-tail
has also been shown to be cleaved at a minimum of two
different sites, generating two distinct products (Figure
1A): one 28 to 34-kDa product containing the entire intra-
cellular C-tail of PC-1 (CTT) [52,53] and a second ~16-
kDa product (p112) [54]. Both of these products have
been observed to interact with transcription factors (β-cat-
enin and STAT6, respectively) and to translocate into the
nucleus [53,54]. The extent of the cleavage of CTT and its
transcriptional activity depend on PC-2 and the regula-
tion of intracellular calcium stores [55]. Identification of
the cleavage sites generating these products, as well as
identification of the endogenous fragments, has not yet
been achieved.

Finally, the intracellular C-tail contains putative phospho-
rylation sites, some of which have been shown to be phos-
phorylated using in vitro kinase assays [56,57].

Polycystin-2 (PC-2, also called TRPP2) is a 968-aa mem-
brane protein containing six transmembrane domains,
with both N- and C-terminal tails facing the cytoplasm
(Figure 1A) [58,59]. PC-2 shares homology with the tran-
sient receptor potential (TRP) family of calcium channels
and, indeed, it has been shown to act as a calcium channel
in either the plasma membrane or the endoplasmic retic-
ulum [39,60]. PC-2 contains a ciliary targeting domain in
its N-terminal tail [61] and both an EF-hand and a coiled-
coil motif in its C-terminal portion [40,59]. Biochemical
analysis has revealed that PC-2 is a 110-kDa glycosylated
membrane protein that appears to be mostly localized to
the ER compartment, as documented by its complete sen-
sitivity to endoH [62]. A minimal amount of the protein
might reach the plasma membrane under physiological
conditions [61-64]. The amount of protein that reaches
the plasma membrane might be greatly enhanced by over-
expression of PC-1, which has also been suggested to be
essential for PC-2 trafficking to the plasma membrane,
where the two proteins might form a functional complex
that regulates calcium influx (Figure 1B) [39,63]. An alter-
native model that takes into account the ER localization of
the PC-2 channel and its concomitant interaction with
PC-1, which is localized at the plasma membrane, is illus-
trated in Figure 1C. In this scheme, the calcium channel
activity of PC-2 would still be regulated by PC-1, but it
would mostly cause ER calcium release rather than cal-
cium influx from the extracellular compartment. Recent
studies have proposed that both mechanisms might take
place within the same cell [65].

Post-translational modifications of PC-2 include phos-
phorylation by serine/threonine kinases (casein kinase II,
GSK3β), which influences its subcellular localization by
regulating its association with other molecules [65,66].

Localization and function of the polycystins
Given the complexity of the processing of the polycystin-
1 and -2 complex and the coexistence of different iso-
forms within cells, it is not surprising that the subcellular
localization and functional characterization of these pro-
teins has uncovered a very complicated picture. However,
it should also be considered that detection of endogenous
polycystin-1 has been problematic due to the low specifi-
city of the antibodies directed against the protein and/or
to the very low abundance of this receptor.

The plasma membrane pool of the PC-1/2 complex has
been localized to cell-cell junctions [41,46,67-69], where
PC-1 has been shown to regulate the rate of adherens
junction formation [68,69] and the mechanical force of
cell-cell adhesion [70]. PC-1 has also been localized to
cell-matrix interacting plaques [71]. Finally, both poly-
cystins have been localized to primary cilia [72,73]. These
are long, thin, microtubule-based, non-motile structures
that protrude from many different cell types. In epithelial
and endothelial cells that develop an apico-basal polarity,
cilia appear on the apical side, where they are believed to
be essential mechanosensors responding to flow [74].
Increasing evidence suggests that, in renal epithelial cells
and endothelial cells, both polycystins localize to cilia,
where PC-1 acts as a mechanosensor [75,76], possibly by
virtue of its long N-terminal domain. This domain is able
to stretch in response to mechanical forces [77,78] and, in
doing so, might activate PC-2, which opens its channel
pore and allows calcium to enter the cell [75,76].

In addition to its intracellular distribution, the PC1/2
complex has recently been identified in urinary exosomes,
small double-membrane vesicles released from the apical
side of epithelial cells that are believed to allow for com-
munication between distant cells [79]. These exosomes
have also been shown to associate and fuse to primary
cilia in bile ducts, raising the possibility that they might
enable communication between distant epithelia within a
tubule through exosome-cilia interactions [79].

PC-1 and PC-2 have also been implicated in several
potential biological functions. Both have been shown to
protect cells from apoptosis under different stress condi-
tions [80-82]. In addition, the PC-1/2 complex has been
found to inhibit cell proliferation through the activation
of the JAK2/STAT1/p21 signaling pathway [83], further
enhanced by a PC-2-Id2 interaction [84]. These two pro-
teins have also been demonstrated to be important regu-
lators of cell migration and epithelial morphogenesis
using in vitro three-dimensional models [70,80,85,86].
Recently, studies conducted on each protein separately
have suggested that they regulate the protein translation
machinery to some extent; PC-1 has been shown to regu-
late mTOR downstream effectors that are known to act on
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translation, such as S6K1 and S6 ribosomal protein and
the 4EBP1/eIF4E complex [87], and PC-2 has been shown
to regulate another translation initiation factor,
eIF2alpha, by regulating its phosphorylation by PERK in
response to ER stress [88]. Interestingly, microarray stud-
ies performed on ADPKD tissues have revealed that sev-
eral genes upregulated in cystic kidneys belong to the
translation machinery [89]. Increased translation in
ADPKD might explain the observed cellular hypertrophy
manifestations (see below) and could contribute to dereg-
ulated proliferation [23].

Finally, PC-1 has been shown to control several addi-
tional signaling cascades in line with its role as a receptor;
the Wnt cascade [53,90], AP-1 [91], PI3kinase/Akt
[70,81], GSK3β [70], STAT6 [54], the calcineurin/NFAT
[92] pathway and the ERK and mTOR cascades [87] have
all been reported to be regulated by PC-1. This review will
focus on the regulation of mTOR and its complexes by PC-
1.

The mTOR pathway, the mTOR complexes and 
the feedback loops
mTOR (mammalian target of rapamycin) is a well-con-
served serine/threonine kinase of the PIKK family (phos-
phoinositide 3-kinase-related kinase) that is involved in
several processes, including cell growth regulation, prolif-
eration, regulation of the cellular cytoskeleton and cell
survival [93-95].

mTOR assembles into two distinct complexes whose
molecular components have been partly characterized:
complex-1 (mTORC1) and complex-2 (mTORC2) [95].
Besides mTOR itself, the two complexes contain common
molecules, such as GβL/mLST8 and DEPTOR [96],
although they differ in their other components; mTORC1
contains Raptor [97] and PRAS40 [98], whereas mTORC2
contains Rictor [99], mSin1 [100,101] and Protor [102]
(Figure 2A).

mTOR can be potently inhibited by the fungal metabolite
rapamycin, which acts on mTORC1 upon binding to an

Overview of the two mammalian targets of rapamycin (mTOR) complexes and their potential regulation by the polycystinsFigure 2
Overview of the two mammalian targets of rapamycin (mTOR) complexes and their potential regulation by 
the polycystins. A. Schematic overview of the composition of mTOR complex 1 (mTORC1) and mTOR complex 2 
(mTORC2) and cross-talk between them. mTORC1 contains mTOR, raptor, GβL/mLST, PRAS40 and DEP domains interactor 
of mTOR (DEPTOR). It can be regulated by a variety of activating or inhibitory cascades, as well as by amino acids capable of 
associating with Rag-GTP, leading to its association with mTORC1 to enhance its activity. One of the effectors of mTORC1, 
S6K1/2, regulates a negative feed-back loop at several levels. It is able to regulate insulin signalling by phosphorylating and 
inducing the degradation of IRS [111-113], and PDGF signalling by regulation of PDGF receptor levels [110]. In addition, S6K1/
2 can phosphorylate rictor [114]. mTORC2 contains mTOR, Rictor, GβL/mLST, mSin and Protor. mTORC2 can phosphor-
ylate Akt at Serine 473, regulating its specificity towards different substrates. Akt, in turn, can phosphorylate Tuberin (TSC2), 
potentially placing mTORC1 downstream of mTORC2 (see text). mTORC2 can also phosphorylate SGK1. B. Schematic rep-
resentation of the effect of PC-1 on the two mTOR complexes. PC-1 has been described to inhibit the mTORC1 complex [87] 
whereas mTORC2 seems to be upregulated, since Akt phosphorylation at Serine 473 is enhanced by overexpression of PC-1 
[70,81]. The role of PC-2 in the regulation of these cascades and their precise mechanism of regulation remain to be clarified.
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endogenous protein, FKBP12 [93-95]. Long-lasting treat-
ments with rapamycin have been reported to inhibit
mTORC2 in a relatively mild and cell type-dependent
manner [103].

The existence of this potent inhibitor has facilitated the
study of the mTORC1 complex, which is far better charac-
terized than mTORC2. mTORC1 is involved in the regula-
tion of cell growth and proliferation, ribosome biogenesis
and translation of a subset of mRNAs, cellular energy
responses and autophagy [93-95]. mTORC2 was initially
described as a regulator of the cellular actin cytoskeleton
[99], and the relatively recent discovery that mTORC2 is
the kinase responsible for regulating the phosphorylation
of serine 473 of Akt/PKB has highlighted its major role in
the regulation of apoptosis [96,104].

mTORC1
mTORC1 is activated by the small GTPase Rheb when it is
in a GTP-bound state (Figure 2A) [95]. This activation
mechanism is tightly controlled by the GAP activity of
tuberin, the gene product of TSC2 (see below) [95].
Tuberin must be associated to hamartin, the TSC1 gene
product (see below), to achieve full activation; this com-
plex favors a GTP-to-GDP conversion of Rheb, which
results in the inactivation of Rheb and the inhibition of
mTORC1. A variety of signaling pathways act on the
mTORC1 cascade by regulating the assembly or the activ-
ity of the tuberin/hamartin complex (Figure 2A). Thus,
several signals converge to act on the TSC1/TSC2 complex
and phosphorylate either tuberin or hamartin to regulate
their activity [95]. Some of these phosphorylation events
enhance the activity of tuberin and hamartin, leading to
downregulation of the mTORC1 pathway, whereas other
events inhibit their activity, resulting in upregulation of
the mTORC1 cascade (Figure 2A) [95]. Several of the
kinases capable of inducing the activation of mTORC1
through the phosphorylation of tuberin are regulated by
tyrosine kinase receptors (RTK). In particular, Akt, RSK1
and the ERKs can all phosphorylate different residues of
tuberin, leading to the inactivation of the tuberin/hamar-
tin complex activity towards Rheb [95]. In addition,
GSK3β, AMPK and REDD1 are among the pathways capa-
ble of inhibiting the activation of mTORC1 by acting on
tuberin [95]. In general, the availability of rich energy
sources and growth-favouring conditions converge to acti-
vate the mTOR cascade, whereas critically minimal energy
conditions shut it off. In addition, mTORC1 functions as
a sensor for amino acids; it is activated in the presence of
amino acids, but inhibited in their absence, and this effect
is mediated by the small GTPase Rag (Figure 2A) [105].

mTORC2
A second mTOR-containing complex (mTOR Complex 2,
mTORC2) was defined upon identification of a new

mTOR interactor, Rictor [99]. Rictor binds to a pool of
mTOR protein that is distinct from that bound by Raptor:
these two adaptors define the two mTOR-containing com-
plexes (Figure 2A) [97,99]. It has been demonstrated that
mTORC2 regulates PKCα and the actin cytoskeleton [99].
The major break-through in the study of mTORC2 func-
tion came from the identification of this complex as the
kinase capable of phosphorylating the hydrophobic motif
of Akt/PKB (serine 473 in Akt1), a serine/threonine kinase
whose activation had long been known to be phosphati-
dylinositol-3-kinase-dependent under physiological con-
ditions [104]. In the accepted model of Akt activation, the
PH domains of Akt and phosphatidylinositol-dependent
kinase 1 (PDK1) would both bind PIP3 domains upon
the activation of PI-3-kinase in cells and the generation of
phosphatidylinositol-3,4,5-phosphate (PIP3) at the
plasma membrane, thus bringing Akt and PDK1 into close
proximity and favouring the phosphorylation of threo-
nine 308 in Akt by PDK1 [106]. In order to reach full acti-
vation, Akt must be phosphorylated at both serine 473
and threonine 308 [106]. Although the identity of the
kinase responsible for phosphorylating the former had
been elusive for a long time, this enzyme was known to be
PI-3-kinase-dependent and was termed 'PDK2'. The dis-
covery that mTORC2 is this kinase (or the most promi-
nent one) both in vitro [104] and in vivo [107,108] has
opened important retrospective interpretations of the lit-
erature. Although the basis for the sensitivity of mTORC2
to PI-3-kinase still remains poorly understood, the sensi-
tivity might not be dependent on the relocalization of the
molecules involved because treatment with PI-3-kinase
inhibitors is sufficient to block in vitro phosphorylation of
Akt at serine 473 by the isolated mTORC2 complex [104].

Finally, emerging evidence suggests that the serine kinase
SGK1 (serum- and glucocorticoid-induced kinase 1),
which belongs to the same family of kinases as Akt, can be
phosphorylated by mTOR, most likely when associated
with mTORC2 [96,109].

Cross-regulation of mTORC1 and mTORC2
Besides containing the same core kinase component
(mTOR), the two complexes regulate one another. Several
studies have shown that at least three distinct tuberin res-
idues can be phosphorylated by Akt [95]. These phospho-
rylation events inhibit tuberin activity and its association
with hamartin, leading to enhanced GTP-Rheb activity
and increased mTORC1 activity. This is a robust and com-
mon mechanism of mTORC1 activation by tyrosine
kinase receptors [95]. Given that Akt itself is phosphor-
ylated by mTORC2, as discussed above, one might imag-
ine that mTORC1 could be activated by mTORC2 (Figure
2A). However, studies in vivo in Rictor-mutant mice have
shown that phosphorylation of Akt at Ser473 is almost
completely abrogated in the absence of mTORC2,
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whereas phosphorylation at Thr308 remains normal
[107,108]. In these mice, phosphorylation of tuberin at
Akt-specific sites was not altered [107]. In addition, the
phosphorylation levels of S6K at Thr389 (a readout of
mTORC1) were only minimally affected [108]. These data
have revealed the possibility that Akt could be activated
simply by phosphorylation at Thr308 and that this event
is sufficient to determine its activity towards some of its
substrates, including tuberin [108]. In this case, mTORC2
cannot be positioned upstream of mTORC1 in a simple,
linear manner.

A very strong cross-talk mechanism has been identified
due to the observation that upregulation of mTORC1
activity in tumours derived from TSC patients and in cells
lacking Tsc2 is accompanied by downregulation of Akt
[110-114]. A novel negative feedback loop has been
described that is activated by mTORC1 and is believed to
be protective of TSC tumours. It was shown that S6K1
activity leads to inhibition of both PDGF and insulin sig-
naling [110-113]. In the case of PDGF it was shown that
in the absence of the Tsc2 gene, increased S6K1 activity
leads to downregulation of the PDGF receptor levels
[110]. In the case of the insulin response, it was demon-
strated that S6K1 phosphorylates the adaptor molecule
insulin receptor substrate (IRS), a key mediator of the
insulin receptor response, causing its degradation and a
downregulation in signaling towards both Akt and the
ERKs (Figure 2A) [110-113]. A recent study has suggested
that the last feedback loop might be stronger than initially
appreciated. A novel molecule, DEPTOR, has been identi-
fied and shown to associate with and to inhibit both
mTORC1 and mTORC2 when isolated and assayed by in
vitro kinase assays [96]. However, when overexpressed in
cells or in naturally occurring multiple myelomas, DEP-
TOR potently inhibits mTORC1, resulting in upregulation
of mTORC2/Akt via the S6K-mediated feedback loop
[96]. It has been proposed that this mechanism is so
strong in cells and tissues that it overrides the inhibitory
activity of DEPTOR on mTORC2 [96]. Therefore, through
a negative feedback loop, mTORC1 is able to potently
inhibit mTORC2 (Figure 2A). More recently, S6K1 was
found to directly phosphorylate rictor, possibly resulting
in downregulation of the mTORC2 activity towards Akt
Ser473 through a mechanism that does not appear to
directly influence mTORC2 kinase activity in vitro [114].
The precise molecular mechanisms of this cross-regula-
tion remain to be elucidated, but these studies provide
evidence of an additional negative feedback loop that
allows for cross-talk between mTORC1 and mTORC2
[114].

The existence of these negative feedback loops might also
have important implications for therapy. Treatment with
rapamycin causes upregulation of mTORC2 and Akt

[111]. Although prolonged exposure to rapamycin might
counteract this upregulation by inhibiting mTORC2, this
effect appears to be cell type-dependent [103]. Therefore,
the possible drawbacks of using rapamycin should be
taken into serious consideration when designing thera-
peutic interventions.

Dysregulation of mTORC1 in polycystic kidney 
disease
Several studies have suggested that the mTORC1 cascade
might be dysregulated in polycystic kidney disease. Three
independent groups have shown that rapamycin has ben-
eficial effects and diminishes the cystic index in rodent
models of polycystic kidney diseases [26,29,30]. It should
be noted that none of the animal models that were shown
to be sensitive to rapamycin develop polycystic kidney
disease due to mutations in either Pkd1 or Pkd2.

However, retrospective analysis of ADPKD patients, who
underwent renal transplantation and were receiving
rapamycin derivatives as an immuno-suppressive therapy,
revealed a significant reduction in the renal volume of the
polycystic kidneys that had not been removed [26]. In
addition, the epithelium of both ADPKD cystic kidneys
and Pkd1 mutant kidneys displayed enhanced mTORC1
activity, as evidenced by immunohistochemical analysis
of S6K and mTOR phosphorylation levels [26]. These ini-
tial studies prompted several centres to design pilot clini-
cal studies to determine the efficacy of rapamycin
treatment on ADPKD patients.

Subsequent studies have further confirmed that mTORC1
effectors, such as S6Rp, are strongly phosphorylated in the
epithelium lining the cysts of ADPKD tissues [27] and in
animal models [28]. However, mTORC1 upregulation
was not observed in all of the cysts, but only in a subset of
the cystic epithelia, in both humans [27] and mice [[28]
and M Pema and A Boletta, unpublished]. These data
highlight the fact that the interconnection between cyst
formation and dysregulation of the mTORC1 cascade is
more complicated than initially anticipated. Moreover,
based on these data, treatment with rapamycin is expected
to be effective only on a subset of cysts.

A more recent report has shown that inactivation of the
Tsc1 gene in the kidney results in massive renal cystogen-
esis [115]. In this case, as expected, all of the cells in which
the Tsc1 gene was inactivated displayed enhanced
mTORC1 activity [115]. However, wild type epithelial
cells that did not show Cre recombinase activity (and,
therefore, loss of the Tsc1 gene) and, consequently, did
not show upregulation of mTORC1 can be found in the
cysts, suggesting a chimeric formation of renal cysts. In the
same report, inactivation of the PTEN gene resulted in
only minimal upregulation of the mTORC1 cascade,
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which was insufficient to cause renal cystogenesis. Based
on their data, the authors proposed that cyst formation
requires upregulation of the mTORC1 cascade, but that
the PI3k/Akt pathway does not appear to be the major reg-
ulator of mTORC1 in the kidney [115].

However, the fact that several cysts in ADPKD tissue and
Pkd1 mutant kidneys appear to be negative to upregula-
tion of mTORC1 calls into question the essential role of
this cascade in the formation of renal cysts. This finding
suggests that mTORC1 upregulation is unlikely to be an
initiating event of cystogenesis, even though it might con-
tribute to cyst growth and expansion, which could explain
the beneficial effects of rapamycin.

Additional studies are necessary in order to further inves-
tigate the relationship between the mTORC1 cascade and
renal cyst formation and expansion.

Regulation of the mTOR complexes by the 
polycystins
In addition to showing that mTORC1 is upregulated in
the cystic epithelia of ADPKD tissues and in rodent mod-
els of PKD, a recent study has demonstrated that the C-ter-
minal tail of PC-1 interacts with tuberin [26]. Based on
these findings, it has been hypothesized that PC-1 might
regulate the mTORC1 pathway [26].

Direct experimental evidence that PC-1 is able to inhibit
the mTORC1 cascade has recently been provided by our
group [87]. Overexpression of full-length PC-1 in renal
epithelial cells (MDCK type II) and in fibroblasts was
shown to reduce cell size by inhibiting mTORC1 and its
two targets, S6K1 and 4EBP1 (Figure 2B) [87]. The oppo-
site effect was found in several sets of fibroblasts lacking
the Pkd1 gene, isolated from two different mouse models
[87]. PC-1 was also shown to inhibit the mTORC1 cas-
cade in a tuberin-dependent manner by regulating its
ERK-dependent phosphorylation [87]. Based on these
studies using gain- and loss-of-function cellular systems, it
was proposed that PC-1 regulates the mTORC1 cascade by
signaling to tuberin primarily via the ERK cascade,
although additional signaling pathways might contribute
as well [87]. These data show that PC-1 is able to inhibit
the mTORC1 cascade in renal epithelial cells and fibrob-
lasts (Figure 2B). It should be noted that different results
have been reported by a different group [27]. Using a sin-
gle set of Pkd1+/+ and Pkd1-/- MEFs immortalized by knock-
ing-down p53, Hartman et al. reported that absence of
Pkd1 gene expression under these conditions did not
result in defective mTORC1 signaling in fibroblasts [27].
However, enhanced mTORC1 signalling was observed in
the epithelia lining the cysts of ADPKD specimens [27].
Based on these findings, PC-1 was proposed to regulate
the mTOR cascade in a cell-type dependent manner [27].

Further studies are required to reconcile these discrepan-
cies.

In addition to the role of PC-1 in the regulation of the
mTORC1 complex, several lines of evidence suggest that
the regulation of mTOR by PC-1 is not limited to
mTORC1.

In previous studies, PC-1 was shown to induce phospho-
rylation of Akt at both Thr308 and Ser473; Akt, in turn,
phosphorylates its target FKHR (FOXO1) to achieve resist-
ance to apoptosis [81]. In addition, PC-1 was proven to
cause rearrangements of the actin cytoskeleton in order to
control cell migration via PI3K/Akt [70]. Furthermore, in
agreement with these results, Yamaguchi et al. have shown
reduced phosphorylation of Akt at Ser473 in M-1 cells and
normal human kidneys cells following calcium restriction
[116] as well as in the cyst-lining epithelium isolated from
ADPKD tissues [116].

Taken together, these data strongly suggest that PC-1
induces the activation of mTORC2 (which is responsible
for phosphorylation of Akt Ser473) and that the activity of
this complex might be impaired in the absence of PKD
gene expression, at least in cystic kidneys.

In contrast, the epithelia lining the cysts in ADPKD liver
tissue display enhanced phosphorylation of Akt at Ser473
[31]. One possible explanation for this finding is that Akt
and its activity towards the mTOR cascade might be regu-
lated differently in different tissues. Although this is cer-
tainly a possibility, it should also be taken into account
that the levels of Akt activation in these liver cysts have
only been evaluated by immunohistochemistry [31]; bio-
chemical means would probably be more accurate and
more sensitive.

Therefore, retrospective examination of past work in light
of recent discoveries in mTORC1 and mTORC2 complex
biology leads to the conclusion that PC-1 inhibits
mTORC1, but might activate mTORC2 (Figure 2B), per-
haps in a cell-type dependent manner. However, formal
evidence that this hypothesis is correct is still lacking.
Future studies should focus on examining the activity of
the two mTOR complexes in gain- and loss-of-function
cellular systems and in cystic tissues. In addition, the role
of the two complexes in PC-1 function should be investi-
gated by manipulating the key components of mTORC1
(Raptor) [97] and mTORC2 (Rictor) [99].

One important question that arises from all of the above
studies is how PC-1 could differentially regulate the
mTORC1 and mTORC2 complexes. Interesting insights
might be derived from the function of the TSC proteins. In
fact, although the hamartin/tuberin complex is a potent
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inhibitor of the mTORC1 complex, it can regulate the acti-
vation state of mTORC2 on at least two different levels: (i)
it directly binds to and stimulates the activity of mTORC2
[117]; and (ii) it can act on mTORC2 activity indirectly,
via the S6K-mediated feedback loop [111]. As stated
above, the latter is a rather strong signal capable of
potently regulating the expression levels of the PDGF
receptor [110] and the insulin response by controlling the
degradation rate of the adaptor IRS [113]. Therefore, cells
lacking Tsc2 display strong upregulation of mTORC1 and
downregulation of mTORC2. This effect is due to both
hyperactivation of the S6K-mediated feedback loop [111]
and absence of the tuberin/hamartin complex associated
with mTORC2 [117].

In a similar manner, PC-1 inhibits mTORC1, which might
release the S6K1 feedback loop, resulting in the activation
of mTORC2 and Akt. A second possibility is that PC-1 reg-
ulates tuberin activity towards both mTOR complexes.

Finally, the role of PC-2 in regulation of mTOR by PC-1,
if any, remains to be investigated. Because the two pro-
teins have been proposed to perform most of their func-
tions in a complex, it is highly likely that PC-2 will play a
key role in the regulation of this cascade as well. Future
studies should focus on this aspect.

Cross-talk between the PKD and TSC genes and 
proteins
The two major regulators of the mTORC1 cascade, TSC1
(on chromosome 9) and TSC2 (on chromosome 16), are
the genes mutated in a genetic disease called Tuberous
Sclerosis Complex (TSC) [118]. This disease is character-
ized by the formation of hamartomas (benign tumour
lesions) in several organs, including the brain, skin, heart,
lung and kidney. TSC is inherited in an autosomal domi-
nant manner, but a second hit affecting the normally
inherited allele or loss of heterozygosity (LOH) has been
described in some of the lesions [118].

TSC can present with a severe renal phenotype, including
angiomyolipomas and sporadic bilateral renal cyst forma-
tion [119]. In a few cases, severe polycystic kidney disease
can be observed. Of interest, the PKD1 and TSC2 genes are
located very close to each other on the human chromo-
some 16 in a tail-to-tail orientation [120]. Furthermore,
this genomic structure is conserved in mice. Molecular
analysis has revealed that, in the majority of cases of
severe polycystic kidney disease observed in TSC, large
deletions of chromosome 16 affecting both the TSC2 and
the PKD1 gene can be observed [120]. Thus, a novel syn-
drome, called TSC/PKD contiguous genes syndrome, has
been defined as a separate entity [120]. It is important to
note that the PKD phenotype in these patients appears to
be very severe [119,120], with massive enlargement of the

kidneys during childhood, suggesting that deletion of
both TSC2 and PKD1 genes has an additive effect in the
kidney. In addition, the aforementioned studies per-
formed in Pkd1 and Tsc2 double heterozygote mice [28]
further reinforce the idea of a possible cross-talk between
the PKD and TSC genes.

The first indications that the PKD and TSC genes are,
indeed, functionally linked came from studies by the
group of Dr C Walker on the Eker rat model [121]. This rat
model carries mutations in the Tsc2 gene, mimicking
many of the features of TSC, and develops a severe renal
cystic phenotype. It was found that renal epithelial cells
derived from the cysts display inactivation of both Tsc2
alleles [121]. Using an antibody directed against endog-
enous PC-1, it was found that PC-1 is retained in the Golgi
compartment in these cells. Replacing wild-type tuberin
completely rescued trafficking of PC-1 to cell-cell junc-
tions [121].

These data suggest that PC-1 and tuberin are able to func-
tionally cross-talk (Figure 3) and that PC-1 might act
downstream of tuberin. According to this model, renal
cyst formation in TSC might be due to defective PC-1
activity.

More recently, Shillingford et al. have shown that a short
C-tail of PC-1 expressed as a chimera with the CD16 sig-
nal peptide and the CD7 transmembrane domain co-
localizes with mTOR and tuberin in the Golgi compart-
ment [26]. In addition, a portion of the intracellular C-tail
of PC-1 co-immunoprecipitates with tuberin [26]. Evi-
dence that the full-length, endogenous PC-1 interacts with
tuberin has not been reported to date. Nevertheless these
data, along with the enhanced activity of mTORC1
observed in cystic epithelia, prompted the authors to sug-
gest that PC-1 and tuberin form a complex to regulate
mTORC1 [26]. In the proposed model, PC-1 is a constitu-
tive partner of the tuberin/hamartin complex that is
required for its GTPase activity towards Rheb. In the
absence of PC-1, the tuberin/hamartin complex would
not be functional, leading to enhanced mTORC1 activity
(Figure 3B).

In a more recent study, it was shown that PC-1 regulates
the mTORC1 pathway and that it requires tuberin to do so
[87]. PC-1 induces downregulation of the ERKs through a
yet-to-be-identified mechanism. This inhibition results in
the decreased phosphorylation of tuberin at ERK-depend-
ent sites, which leads to enhanced GTPase activity towards
Rheb and the inhibition of mTORC1 [87]. According to
this model, tuberin acts downstream of PC-1, at least in its
activity towards mTORC1 (Figure 3A).
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Functional cross-talk between the TSC2 gene product, Tuberin and the PKD1 gene product, polycystin-1Figure 3
Functional cross-talk between the TSC2 gene product, Tuberin and the PKD1 gene product, polycystin-1. Evi-
dence published to date suggests that PC-1 trafficking from the Golgi compartment to cell-cell junctions requires Tuberin 
[122]. The role of Tuberin in PC-1 trafficking to the primary cilium was not investigated. In addition, PC-1 can regulate the 
mTORC1 cascade by regulating the phosphorylation and activity of Tuberin (A) [87]. Furthermore, a physical interaction was 
described between the portion of the PC-1 cytoplasmic C-terminal tail most proximal to the last transmembrane domain and 
Tuberin [26]. The PC-1/Tuberin interaction might be necessary for the correct trafficking of PC-1 or for regulation of 
mTORC1 (B, see text). Future studies should focus on providing experimental evidence of the significance of this interaction. 
One final possibility is that PC-1 and Tuberin cross-talk at several levels.
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Can we place these results into a single framework in
order to better understand the reciprocal regulation of the
two genes? The idea of an interaction between PC-1 and
tuberin that is able to regulate PC-1 trafficking is very
appealing because it would easily explain the renal phe-
notype observed in TSC/PKD contiguous genes syndrome
[121]. If PC-1 requires tuberin to localize to the plasma
membrane, where it carries out its key functions, then we
can imagine that double heterozygosity might be suffi-
cient to cause cyst formation. In this scenario, the cells
express a half amount of PC-1, only part of which is cor-
rectly delivered to the plasma membrane, thus causing a
drop in PC-1 function/signaling below the critical thresh-
old of activity necessary to prevent cyst formation. If this
were the case, one would expect that cells carrying hetero-
zygous inactivation of the TSC2 gene should exhibit
defective PC-1 trafficking or function. This hypothesis
needs to be formally tested, although analysis of the dis-
tribution of endogenous PC-1 poses several challenges
due to the limited reliability of the available antibodies
directed against this protein.

One additional caveat of this model is that the expression
level of the tuberin/hamartin complex appears to be
much higher than that of PC-1, and a halved expression of
tuberin should be more than sufficient to deliver PC-1 to
the plasma membrane. If tuberin interacts with PC-1,
however, we cannot assume that the stoichiometry of the
complex is 1:1. Recent studies have revealed a 1:3 stoichi-
ometry for the PC-1:PC-2 complex [40]. Therefore,
although PC-2 appears to be expressed at higher levels
than PC-1, this difference might be biologically justified
by the composition of the complex. Similar considera-
tions might apply to the PC-1/tuberin interaction in sup-
port of the proposed model.

Finally, one possibility to be considered is that the TSC/
PKD cross-talk acts at several levels. On one hand, tuberin
might mediate an essential trafficking step of PC-1. On the
other hand, PC-1 at the plasma membrane might control
the mTORC1 cascade through regulation of tuberin,
either via physical association with this protein or
through indirect regulation of its activity (Figure 3).

Although these studies have begun to shed light on this
complicated inter-relationship, it is clear that intense
efforts will be required to gain further insight into PKD/
TSC gene cross-talk and its biological effects. In particular,
efforts should be devoted to clarify if over-expressed and/
or endogenous, full-length PC-1 and tuberin are indeed
able to associate in a complex in cells and tissues. In addi-
tion, it will be important to understand if PC-1/tuberin
cross-talk is limited to mTORC1 regulation or if it is
involved in additional biological functions. In fact, the
recent finding that spontaneous renal cystogenesis is

enhanced in double Tsc2+/-;Pkd1+/- mice, but that some of
the cysts observed are negative for mTORC1 upregulation
strongly suggests that the cross-talk extends beyond regu-
lation of the mTORC1 cascade [28].

Cilia, the cell cycle and cell size
As stated above, the PC-1/2 complex localizes to cilia in
different mammalian cell types [72,73]. Therefore, it is
expected that at least some of its functions will coincide
with those of the cilia. The structure of cilia and flagella,
as well as that of the key components of the intraflagellar
transport (IFT) machinery, is highly conserved in all
eukaryotes. For this reason, the unicellular alga Chlamid-
omonas reinhardtii has been used extensively to gain
important insights into the function of cilia in higher
eukaryotes.

Previous studies performed in this organism have demon-
strated that there is a strong correlation between the
length of flagella, the size of cells and the ability of cells to
undergo division [122]. Based on these findings, it was
proposed and subsequently demonstrated that the cilium
plays a fundamental role in the regulation of cell cycle
progression [122,123], both in Chlamidomonas [122,123]
and in mammalian cells [124]. The studies showing that
PC-1 is able to decrease cell size via the mTORC1 cascade,
in addition to its ability to slow progression through the
cell cycle [87], parallel similar studies performed by the
group of Dr Quarmby. This group has shown that the
orthologs of NIMA (never in mitosis) kinases in Chlamid-
omonas achieve a very similar effect [123]. The regulation
of cell size in lower eukaryotes is much easier to study and
understand than in higher eukaryotes; indeed, our under-
standing of how cell and tissue size are established in
higher eukaryotes and mammals is far less intuitive. Nev-
ertheless, there might be interesting parallels worth fol-
lowing, including the correlation between cell size, the
cell cycle and flagellar size. Intriguingly, hamartin has
recently been localized to the basal body of cilia in mam-
malian cells [27], and absence of the hamartin/tuberin
complex has been linked to a long ciliary phenotype [27].
This effect was rapamycin-insensitive, suggesting that
mTORC1 does not regulate cilia length [27]. These stud-
ies, however, do not exclude the possibility that cilia
might act upstream of mTORC1 and regulate its activity.

Is there a link between cilia/flagella length, cell size, cell
division and TORC1 activity? It is tempting to speculate
that perhaps cilia are sensory organelles capable of sens-
ing their environment to coordinate protein synthesis and
cell division in order to maintain proper cell size. This
effect might be achieved through the TORC1 cascade,
which is known to regulate cell size in virtually all systems
in which it has been studied [93-95]. Chlamidomonas
would be the ideal system in which to test this hypothesis
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because TORC1 is expressed, functional and sensitive to
rapamycin in this organism, although it has been only
minimally studied [125].

Conclusion
Recent studies have uncovered important roles for Poly-
cystin-1 in the regulation of the mTOR cascades and its
complexes. Not only have these studies shown the poten-
tial of using a well-characterized drug, rapamycin, to slow
disease progression in ADPKD, but they have also uncov-
ered important new functions of the polycystins.

One exciting aspect of these recent studies is that they
have revealed an important cross-talk between the genes
mutated in ADPKD and those mutated in TSC, although
further studies are required to fully understand the molec-
ular details of this relationship. It is important to note that
although dysregulated growth and proliferation (possibly
driven by mTOR in some cysts) might be important com-
ponents of renal cyst expansion in human patients and
potentially good targets to slow disease progression, they
might not be the initiating events of cystogenesis. Increas-
ing evidence suggests that defective planar cell polarity
(PCP) might cause cyst formation [33-37]. The elucida-
tion of the molecular mechanisms involved in this proc-
ess, which are defective in cystic kidney diseases, might
allow for the identification of potential pharmacological
targets that would then enable the design of a specific cure
for the disease.

Finally, one intriguing aspect discussed in this review is
the speculative link between cilia, cell size and regulation
of the cell cycle. What is the relationship between the reg-
ulation of cell size and the pathogenesis of TSC and/or
ADPKD? There is currently no answer to this question, but
it cannot be ignored that besides the TORC1 pathway, the
other known cascade involved in the regulation of cell/tis-
sue size is that of the Hippo pathway [126]. This pathway
is the main cascade lying downstream of the Fat cadher-
ins, master regulators of PCP, as stated above [127]. There
is a well-documented link between programs of cell polar-
ity and programmes of cell growth [128]. It is intuitive
that these pathways need to be coordinated in order to
achieve and maintain proper tissue morphogenesis. This
link might be regulated by the primary cilium and could
be disrupted in cystic kidney diseases or other disorders
such as cancer.
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